Золотая педагогика

Полупроводниковый лазер

Полупроводниковый лазер - полупроводниковый квантовый генератор, лазер с полупроводниковым кристаллом в качестве рабочего вещества. В полупроводниковом лазере в отличие от лазеров других типов, используются излучательные квантовые переходы не между изолированными уровнями энергии атомов, молекул и ионов, а между разрешенными энергетическими зонами кристалла. В полупроводниковом лазере возбуждаются и излучают (коллективно) атомы, слагающие кристаллическую решётку. Это отличие определяет важную особенность полупроводниковых лазеров - малые размеры и компактность (объём кристалла ~10-6-10-2см3). В полупроводниковых лазерах удаётся получить показатель оптического усиления до 104 см-1, хотя обычно для возбуждения генерации лазера достаточны и меньшие значения. Другими практически важными особенностями полупроводниковых лазеров являются: высокая эффективность преобразования электрической энергии в энергию когерентного излучения (до 30-50%); малая инерционность, обусловливающая широкую полосу частот прямой модуляции (более 109 Ггц); простота конструкции; возможность перестройки длины волны l излучения и наличие большого числа полупроводников, непрерывно перекрывающих интервал длин волн от 0,32 до 32 мкм.

Инжекционные лазеры. Лазер на р-n-переходе представляет собой полупроводниковый диод, у которого две плоскопараллельные поверхности, перпендикулярные р-n-переходу, образуют оптический резонатор (коэффициент отражения от граней кристалла ~20-40%). Инверсия населённостей достигается при большой плотности прямого тока через диод (порог генерации соответствует току ~1 кА/см2, а при пониженной температуре ~ 102А/см2). Для получения достаточно интенсивной инжекции применяют сильно легированные полупроводники.

Инжекционные лазеры на гетеропереходе (появились в 1968) представляют собой, например, двусторонние гетероструктуры. Активный слой (GaAs) заключён между двумя полупроводниковыми гетеропереходами, один из которых (типа р-n) служит для инжекции электронов, а второй (типа р-р) отражает инжектированные электроны, препятствуя их диффузионному растеканию из активного слоя (электронное ограничение). При одинаковом токе накачки в активном слое гетероструктуры достигается большая концентрация электронно-дырочных пар и, следовательно, большее оптическое усиление, чем в полупроводниковых лазерах на р-n-переходах. Другое преимущество гетероструктуры состоит в том, что образованный активным слоем диэлектрический волновод удерживает излучение, распространяющееся вдоль структуры, в пределах активного слоя (оптическое ограничение), благодаря чему оптическое усиление используется наиболее эффективно. Они находят широкое применение как управляемые источники света в оптоволоконных линиях связи. Также, они используются в различном измерительном оборудовании, например лазерных дальномерах. Другое распространённое применение — считывание штрих-кодов. Лазеры с видимым излучением, обычно красные и иногда зелёные — в целеуказателях. Инфракрасные и красные лазеры — в проигрывателях CD- и DVD-дисков. Синие лазеры — в выходящих в настоящее время на рынок устройствах HD DVD и Blu-Ray. Исследуются возможности применения полупроводниковых лазеров в быстрых и недорогих устройствах для спектроскопии.

До момента разработки надёжных полупроводниковых лазеров, в проигрывателях CD и считывателях штрих-кодов разработчики вынуждены были использовать небольшие гелий-неоновые лазеры.

Еще по теме:

Подготовка учителя технологии к занятиям
Текущая подготовка учителя предусматривает планирование пр-венно-П-ческой Д на учебный год, четверть или раздел учебной программы. Она проводится с целью конкретизации П-ческих задач, содержания, форм, методов и ср-в обучения для достижения максимальных рез-татов в обучении, В-нии и развитии шк-ков ...

Категории

© 2018 Copyright www.sotbay.ru