Золотая педагогика

Спектроскопия, теоретические основы, спектроскопия комбинационного рассеяния

Образование » Разработка и постановка лабораторных работ по курсу "Наноматериалы и нанотехнологии" » Спектроскопия, теоретические основы, спектроскопия комбинационного рассеяния

Страница 1

Спектроскопия – раздел физики, посвященный изучению спектров электромагнитного излучения.

Свет – это электромагнитное излучение с длиной волны l от 10-3 до 10-8 м. Этот диапазон длин волн включает инфракрасную, видимую и ультрафиолетовую области. Инфракрасный интервал спектра подразделяется на дальнюю, среднюю и ближнюю области. При комнатной температуре любое материальное тело излучает в дальней инфракрасной области, при температуре белого каления излучение сдвигается в ближнюю инфракрасную, а затем и в видимую часть спектра. Видимый спектр простирается от 750 нм до 400 нм. Свет этих длин волн воспринимается человеческим глазом, и именно на эту область приходится большое число спектральных линий атомов. Диапазон от 400 до 200 нм соответствует ультрафиолетовой области, далее следует вакуумный ультрафиолет.

Каждый атом и молекула имеют уникальное строение, которому соответствует свой уникальный спектр.

Структура спектра атома, молекулы или образованной ими макросистемы определяется их энергетическими уровнями. Согласно законам квантовой механики, каждый энергетический уровень соответствует определенному квантовому состоянию. Электроны и ядра в таком состоянии совершают характерные периодические движения, для которых энергия, орбитальный момент количества движения и другие физические величины строго определены и квантованы, т.е. принимают лишь разрешенные дискретные значения, соответствующие целым и полуцелым значениям квантовых чисел. Если известны силы, связывающие электроны и ядра в единую систему, то по законам квантовой механики можно рассчитать ее уровни энергии и квантовые числа, а также предсказать интенсивности и частоты спектральных линий. С другой стороны, анализируя спектр конкретной системы, можно определить энергии и квантовые числа состояний, а также сделать выводы относительно действующих в ней сил. Таким образом, спектроскопия является основным источником сведений о квантово-механических величинах и о строении атомов и молекул.

В атоме наиболее сильное взаимодействие между ядром и электронами обусловлено электростатическими, или кулоновскими силами. Каждый электрон притягивается к ядру и отталкивается всеми остальными электронами. Это взаимодействие определяет структуру энергетических уровней электронов. Внешние электроны, переходя с уровня на уровень, испускают или поглощают излучение в ближней инфракрасной, видимой и ультрафиолетовой областях. Энергии переходов между уровнями внутренних оболочек соответствуют вакуумной ультрафиолетовой и рентгеновской областям спектра. Более слабым является воздействие электрического поля на магнитные моменты электронов. Это приводит к расщеплению электронных уровней энергии и, соответственно, каждой спектральной линии на компоненты. Кроме того, ядро, обладающее ядерным моментом, может взаимодействовать с электрическим полем орбитальных электронов, вызывая дополнительное сверхтонкое расщепление уровней энергии.

При сближении двух или более атомов между их электронами и ядрами начинают действовать силы взаимного притяжения и отталкивания. Итоговый баланс сил может привести к уменьшению полной энергии системы атомов – в этом случае образуется стабильная молекула. Строение молекулы в основном определяется валентными электронами атомов, а молекулярные связи подчиняются законам квантовой механики. В молекуле наиболее часто встречаются ионные и ковалентные связи. Атомы в молекуле испытывают непрерывные колебания, а сама молекула вращается как целое, поэтому у нее возникают новые энергетические уровни, отсутствующие в изолированных атомах. Энергии вращения меньше колебательных энергий, а колебательные – меньше электронных. Таким образом, в молекуле каждый электронный уровень энергии расщепляется на ряд близко расположенных колебательных уровней, а каждый колебательный уровень, в свою очередь, на тесно расположенные вращательные подуровни. В результате в молекулярных спектрах колебательные переходы имеют вращательную структуру, а электронные – колебательную и вращательную. Переходы между вращательными уровнями одного и того же колебательного состояния попадают в дальнюю инфракрасную и микроволновую области, а переходы между колебательными уровнями одного и того же электронного состояния соответствуют по частотам инфракрасной области. Благодаря расщеплению колебательных уровней на вращательные подуровни каждый переход распадается на множество колебательно-вращательных переходов, образуя полосы. Аналогично электронные спектры молекул представляют собой ряд электронных переходов, расщепленных тесно расположенными подуровнями колебательных и вращательных переходов.

Страницы: 1 2 3

Еще по теме:

Характеристика профессиональной компетентности педагогов ДОУ
Для целостного представления о возможных путях, способах формирования профессиональной компетентности воспитателей дошкольных образовательных учреждений рассмотрим ключевые понятия: компетентность, компетенции, профессиональная компетентность. «Компетентность» как феномен, несмотря на достаточное к ...

Категории

© 2018 Copyright www.sotbay.ru