Золотая педагогика

Наиболее важные приемы преобразования уравнений

Страница 11

В результате этого умножения и очевидных преобразований приходим к уравнению

.

Оно имеет единственный корень , так как уравнение решений не имеет.

Подстановка в исходное уравнение показывает, что - корень.

Ответ. .

Впрочем, здесь можно было обойтись и без подстановки: функция нигде в нуль не обращается, и поэтому умножение обеих частей уравнения на эту функцию не приводит к появлению посторонних решений.

Пример 21. Решить уравнение . [9]

Решение. Умножим обе части уравнения на функцию . После преобразований получим уравнение

.

Оно имеет два корня: . Проверка показывает, что - посторонний корень (нетрудно видеть, - корень функции ). Таким образом, уравнение имеет единственный корень .

Ответ. .

Методика решения иррациональных неравенств

Если в любом иррациональном уравнении заменить знак равенства на один из знаков неравенства: >, , <, , то получим иррациональное неравенство. Поэтому под иррациональным неравенством будем понимать неравенство, в котором неизвестные величины находятся под знаком корня.

Способ решения таких неравенств состоит в преобразовании их к рациональным неравенствам путем возведения обеих частей неравенства в степень.

Решение иррациональных неравенств осложняется тем обстоятельством, что здесь, как правило, исключена возможность проверки, поэтому надо стараться делать все преобразования равносильными.

При решении иррациональных неравенств следует запомнить правило: при возведении обеих частей неравенства в нечетную степень всегда получается неравенство, равносильное данному неравенству. [16]

Но если при решении уравнений в результате возведения четную степень мы могли получить посторонние корни (которые, как правило легко проверить) и не могли потерять корни, то корни неравенства при бездумном возведении в четную степень могут одновременно и теряться, и приобретаться.

Например, возведя в квадрат:

верное неравенство , мы получим верное неравенство ;

верное неравенство , мы получим неверное неравенство ;

неверное неравенство , мы получим верное неравенство ;

неверное неравенство , мы получим неверное неравенство .

Вы видите, что возможны все комбинации верных и неверных неравенств.

Страницы: 6 7 8 9 10 11 12 13 14

Еще по теме:

Пути и приемы повышения мотивации учеников на уроке иностранного языка
Эффективность овладения иностранным языком зависит не только от стратегии обучаемого, но и от стратегии обучения. Максимальный эффект может быть достигнут в гармонии этих стратегий. Важным фактором, помогающим достичь эту цель, является повышение эффективности педагогического воздействия учителя на ...

Категории

© 2018 Copyright www.sotbay.ru