Золотая педагогика

Наиболее важные приемы преобразования уравнений

Страница 14

Ответ. .

Для решения иррациональных неравенств, так же как и для решения иррациональных уравнений, с успехом может применяться способ подстановки или введения новой переменной.

Весьма эффективны так называемые рационализирующие подстановки. Применение рационализирующих подстановок позволяет привести функцию, иррациональную относительно исходной переменной, к рациональной функции относительно новой переменной.

Пример 9. Решить неравенство .

Решение. Введем новую переменную t с помощью рационализирующей подстановки , .

Тогда и для переменной t получаем рациональное неравенство

, где .

Ответ. .

В данной работе сделана попытка разработать методику обучения решению иррациональных уравнений и неравенств в школе.

В ходе работы были решены следующие задачи:

Проанализированы действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств. Проведенный анализ позволяет сделать следующие выводы:

теория методов изложена не достаточно строго;

в одном учебнике материала по методам решения иррациональных уравнений нет. В остальных учебниках рассмотрены два основных способа решения: возведение обеих частей уравнения в степень, с последующей подстановкой полученных корней в исходное уравнение, а также решение уравнений с помощью равносильных преобразований;

очень мало материала по методам решения иррациональных неравенств;

среди предлагаемых заданий много однотипных;

Изучены стандарты образования по данной теме;

Изучена учебно-методическая литература по данной теме;

Рассмотрены ситуации, связанные с потерей или приобретением посторонних корней в процессе решения, показано, как их распознавать и как с ними можно бороться;

Подобраны примеры решения иррациональных уравнений и неравенств для демонстрации излагаемого теоретического материала;

Показано, что общие методы решения уравнений применимы для решения иррациональных уравнений и неравенств.

Страницы: 9 10 11 12 13 14 

Еще по теме:

Воспитание у древних народов. Египет
В древнем Египте существовала система всеобщего народного просвещения, главным образом в области наук и технологий связанных со строительством и земледелием. В этом отношении особенно выделялось обучение арифметике и геометрии. Об этом мы имеем свидетельство самого Платона в его труде «Законы», в к ...

Категории

© 2019 Copyright www.sotbay.ru